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Purpose of review

Epigenetics is the study of stable modifications of fixed genomes that direct which genes are expressed and
which are silenced. Epigenetic changes are modulated by environmental exposures, making epigenetics
the interface between genes and environment. This has particular relevance in understanding the effect of
occupational exposures on the expression of allergic disease. The goal of this review is to describe how
epigenetic changes affect transcription potential, and to examine more closely the effect of specific
environmental and occupational exposures on epigenetic variations that alter allergy gene transcripts and
the inflammatory milieu.

Recent findings

Gene transcription is activated when specific CpG sites are demethylated and histones are acetylated,
and, conversely, silenced when sites are methylated and histones deacetylated. The development of Th1
and Th2 phenotypes, and expression of Treg cells, are now known to be modulated by epigenetic
mechanisms. Workplace exposures such as tobacco smoke, particulates, diesel exhaust, polyaromatic
hydrocarbons, ozone, and endotoxin, among others, suppress Treg development, and enhance expression
of inflammatory cytokines and allergic phenotypes by epigenetic means.

Summary

Epigenetic manipulation to open and close transcription sites provides flexibility of gene expression in
response to changing environmental cues. It may also be the window whereby allergic disease in the
workplace can be reduced by targeted environmental interventions.
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INTRODUCTION

Epigenetics is the heritable modification of DNA
packaging that determines which genes can be
read and transcribed, and which are mothballed.
Although heritable from parent to child, and
potentially stable between cell cycles, epigenetic
regulation of DNA transcription can also be modi-
fied by a number of external factors to allow flexible
responses to a changing environment. It is wherein
the rubber hits the road between environmental
exposures and appropriate genome driven responses.
Given the complexity and sophistication of this
process, ubiquitous among mammals, epigenetic
regulation of gene expression can generally be
assumed to benefit the host. It is a highly developed
mechanism to adapt to changing environmental
conditions. There are, however, settings wherein
epigenetic modification of genome transcription
is maladaptive.

A number of different disease processes, among
them cancer, atherosclerosis, mental retardation
illiams & Wilkins. Unau
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syndromes, autoimmune, and allergic processes
are in part controlled by epigenetic processes. The
focus of this review is the epigenetic regulation
of asthma and allergy in the workplace. Although
there are no specific studies, as yet, in occupational
settings, there are obvious connections between
exposures applicable to the workplace that could
potentiate the development of asthma and allergies.
This article will review the established epigenetic
mechanisms affecting gene transcription, and
thorized reproduction of this article is prohibited.
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KEY POINTS

� Gene expression is regulated by epigenetic
modifications that determine which loci are transcribed
and which are silenced.

� These epigenetic modifications are influenced by
environmental exposures such as air pollution, tobacco
smoke, and other sources of oxidant stress, along with
the microbial environment, pesticides, and toxins.

� The development of T helper cell phenotypes and T
regulatory cells is known to be under epigenetic
control.

� The occupational environment includes many oxidant
stressors, microbial exposures, and toxic chemicals that
affect epigenetic marks, and thus may affect the
expression of an allergic or tolerant phenotype.

� Better understanding of the interface between
occupational exposures and their epigenetic effects on
allergic gene expression may enable us to modify the
working environment and prevent occupational
allergic diseases.

Occupational disease
describe what is known regarding the effect of such
mechanisms on T-cell development and differen-
tiation. Finally, we will examine the outcome of
exposures found in the workplace and known to
influence epigenetic changes and gene expression
relevant to occupational allergic disease.
EPIGENETIC MECHANISMS

Several different processes affect DNA packaging
that determines what portions of the genome
are available for transcription (reviewed in [1

&&

]).
Methylation of DNA sequences, modification of
histones, and chromatin remodeling are coordi-
nated processes, and the specific enzymes needed
for each process often cluster in the same complex.
DNA methylation, specifically of CpG dinucleoti-
des, leads to gene silencing [2]. The mechanisms
are thought to include steric inhibition of transcrip-
tional activator binding (e.g. Sp1 and Myc) or by
binding methyl CpG binding domain proteins (e.g.
MBD proteins 1–4, MeCP2, UHRF, Kaiso or ZBTs)
that may recruit histone modifiers, chromatin
remodeling complexes, or other proteins that create
a closed chromatin configuration. In general, CpG
sequences are relatively rare, comprise only 1–3%
of total DNA, and most of these dinucleotides are
methylated. In contrast, CpG rich clusters of 1–4 kb,
termed CpG islands, tend to cluster at the 50 untrans-
lated regions (UTRs) of promoter regions and
the first exons of many genes, and these are
mostly unmethylated [3

&&

]. Hence CpG islands
opyright © Lippincott Williams & Wilkins. Unautho
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tend to correspond to open chromatin structures
and active transcription. The earliest studies on the
effect of methylation to suppress gene expression
were on the X chromosome Barr Bodies – the
duplicate X in women that is preferentially silenced
[4]. DNA methylation is accomplished by several
subtypes of the DNA methyl transferases (DNMT).
DNMT1 is considered the maintenance methyl-
transferase because this isoform acts to maintain
methylation states during mitosis and in the daugh-
ter cells. DNMT3A and DNMT3B initiate de-novo
methylation [5], although the triggers for this
activity are only partly identified. Age, sex, genetic
polymorphisms, and environmental exposures are
some factors associated with altered methylation
[6]. DNMT2 is another identified isoform, although
its specific function remains unclear.

Histones can be modified by a number of pro-
cesses, including by acetylation, phosphorylation,
methylation, ubiquitination (attachment of small
ubiquitin molecules that act as a tag to ferry the
protein to the proteasome for degradation), or
sumoylation [the attachment of Small Ubiquitin-
like Modifier (SUMO) proteins with similar effects].
Histone acetylation is thought to enhance transcrip-
tion, and the best characterized enzymes for histone
modification include histone acetyltransferases
(HATs), histone deacetylases (HDACs), and histone
methyltransferase [7]. Histone modifications alter
gene expression by recruiting DNA demethylases
and methylated DNA binding proteins to shift
nucleosomes and open or close transcription sites.
In general, histone modifications are thought to
transduce more rapid responses to a changing
environment, followed by alterations in DNA
methylation sites that maintain gene silencing over
longer time periods [8,9

&

].
In addition, small noncoding miRNAs (micro-

RNAs) may bind to target mRNAs with complemen-
tary sequences to interfere with translation, or cause
sequence degradation. miRNAs are thought to result
from their own genes, or to arise from introns/exons
of other genes [10,11].

Together, DNA methylation, histone modifi-
cation, and miRNAs represent coordinated processes
that regulate gene silencing or expression by archi-
tectural remodeling of the genome.
EPIGENETIC EFFECTS ON T-CELL
DIFFERENTIATION: T HELPER CELL 1, T
HELPER CELL 2, AND T REGULATORY
CELLS

A growing body of evidence clearly shows that
the development and differentiation of T-cell
helper subsets, and the expression and function of
rized reproduction of this article is prohibited.

Volume 12 � Number 2 � April 2012



Epigenetics mediate occupational sensitization Pacheco
T regulatory cells, are under the control of epigenetic
mechanisms. Since the expression of inflammation,
immunity, and tolerance must adapt quickly to
environmental cues, this body of research is the
clearest indication yet of the marvelous flexibility
of the T-cell network to respond to shifting immuno-
logical needs in a changing milieu.
T helper cell 1/T helper cell 2 differentiation

Differentiation of T helper cells into a Th1 or Th2
phenotype is in part directed by differential meth-
ylation and acetylation, and subsequent expression
or repression of Th specific genes [12

&&

]. The Th1/Th2
ratio is extremely sensitive to histone acetylation
and deacetylation [13]. De-novo methylation of the
intergenic region between interleukin 4 (IL-4) and
IL-13 on chromosome 5q21 reduces expression of
Th2 cytokines in the cellular milieu, and hence
decreases skewing toward Th2 development [14].
Concurrently, CpG sites upstream to the transcrip-
tion start site of the gamma interferon (g-IFN)
promoter are demethylated [15]. HDAT complexes
are displaced whereas HAT activity increases,
leading to histone acetylation and nucleosome
repositioning to a more open position [16]. These
events facilitate binding of T-bet, c-Jun (activating
transcription factor 2 ATF2), and CREB (cAMP-
responsive element binding protein) to g-IFN
promoter sites [17], turning on promoter activity
that leads to g-IFN expression.

In contrast, Th2 differentiation is characterized
by increased methylation of these g-IFN promoter
sites along with repressive histone deacetylation
[18]. The IL-13/IL-4 region undergoes extensive
demethylation and histone modification, and
becomes available to bind transcription factors
GATA3 (one of a family of transcription factors able
to bind the DNA sequence ‘GATA’) and signal
transducer and activator of transcription 6 (STAT6).
Because the GATA3 binding site is located within
the first intron of the IL-4 sequence, and is first to
lose CpG methylation, IL-4 production is a rapid,
early response that sets the stage for the synthesis of
IL-13 and IL-5 [14]. With commitment to the Th2
lineage, additional demethylation occurs at the 50

end of the gene, necessary to maintain high levels of
IL-4 synthesis [14].

In summary, the process of T helper lineage
commitment requires coordinated repression of
cytokines related to one phenotype, concomitant
with the orchestrated expression of cytokines of
the alternate phenotype. This is accomplished by
the epigenetic modification of chromatin packaging
that opens one set of gene sequences for expression
while closing another.
Copyright © Lippincott Williams & Wilkins. Unau
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Epigenetic regulation of the forkhead box p3
gene
The forkhead box p3 (FOXP3) gene, located on the X
chromosome, is the master controller of Treg cells,
and it is highly conserved among a number of
mammals including humans [19]. Required for Treg
suppressive function, FOXP3 expression is largely
controlled by epigenetic alterations in three highly
conserved noncoding regions in the FOXP3 gene
(reviewed in [20] and [21]). The FOXP3 upstream
promoter is strongly associated with acetylated
histones [22], and contains CpG motifs that are
weakly methylated in naı̈ve and activated CD4þ T
cells and in TGFb induced (i)Treg cells, but are
almost completely demethylated in natural (n)Treg
cells [23,24]. The second highly conserved region in
the FOXP3 gene is a TGFb sensitive element that
contains nuclear factor of activated T cells (NFAT)
and mothers against decapentaplegic homologue 3
(SMAD) binding sites, and is associated with higher
levels of acetylated histone H4. Binding of TGFb

induces the development of peripheral iTreg cells.
This site may also increase the demethylation of
the FOXP3 promoter, making it more available for
transcription. TGFb induced iTreg cells do not main-
tain constitutive FOXP3 expression if restimulated
in the absence of TGFb, suggesting that FOXP3
expression must undergo stable epigenetic modifi-
cation in order to maintain a consistent repressor
phenotype in these cells [25]. Lastly, the Treg-cell-
specific demethylated region (TSDR), a CpG rich
region of the FOXP3 locus, is always demethylated
in Treg cells, but is methylated in conventional
T cells [26,27]. The region is also associated
with acetylated histones H3 and H4, and trimethyl-
ated lysine 4 in H3 [28]. Although the TSDR is
not thought to act as a definitive on-off switch
for Treg activity, it does determine FOXP3 stability
[25]. Treg cells induced from conventional CD4þ

T cells by interaction with antigen presented by
dendritic cells also display a fully demethylated
TSDR [25].

Other epigenetic mechanisms negatively regu-
late the differentiation of natural Treg cells; among
them is the SUMO E3 ligase PIAS1 (protein inhibitor
of activated signal transducer and activator of
transcription STAT1). PIAS1 binds to the FOXP3
promoter to recruit DNA methyltransferases that
shut down FOXP3 transcription [29]. IL-6 also nega-
tively regulates nTregs by inducing STAT3 depend-
ent methylation of the upstream FOXP3 enhancer
by DNMT1 that represses FOXP3 expression [23].
T-cell receptor (TCR) binding also controls FOXP3
expression in CD4þ cells by inducing H3-K4
methylation at the FOXP3 promoter and intronic
enhancer. However, continued TCR stimulation
thorized reproduction of this article is prohibited.
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Occupational disease
leads to loss of these epigenetic marks and sub-
sequent inhibition of FOXP3 expression [30].
ENVIRONMENTAL FACTORS THAT
MODULATE EPIGENETIC EFFECTS ON
ASTHMA AND ALLERGY

Most epigenetic modifications are dynamic, with
one study [31] demonstrating a global DNA meth-
ylation change of over 20% in a subset of individuals
studied for 11–16 years. Interestingly, methylation
changes were found clustered in related individuals,
compared with the majority who did not show
significant changes, and suggesting a genetic influ-
ence. A similar study [32] of methylation patterns
over 10 years found that loci in CpG islands were
more likely to become methylated, whereas loci
outside of such islands were more likely to deme-
thylate, with methylation patterns stable across tis-
sue types. Histone modifications are also dynamic,
with changes over shorter time periods [33].

Epigenetic remodeling of chromatin packaging
has been detected in children in prenatal, perinatal,
and postnatal time periods. Maternal tobacco
smoke exposure, air pollution (specifically diesel,
particulate material, and PAHs), and a diet rich in
folate, have all been associated with increased risk
of asthma and atopy in the child (reviewed in [9

&

]).
Each of these exposures associates with DNA
methylation and histone modification. In contrast,
in-utero exposure to specific microbial exposures in
farming environments [34], and with Actinetobacter
lwoffii in a mouse model [35], associates with
demethylation of the FOXP3 gene, concomitant
increased FOXP3 expression, and enhanced neo-
natal Treg function, leading to allergy protection.

Polychlorinated biphenyl compounds (PCBs),
organochlorine pesticides, dioxins, and phthalates
have generally immunosuppressive effects at high
doses [36]. At low doses such as those found in
the ambient environment, however, allergic Th2
immune responses are supported through the
estrogenic hormonal activity of these compounds,
whereas Th1 immune responses are selectively
inhibited [37,38], mediated by effects on global
DNA methylation patterns.

Tobacco smoke has been associated with
higher rates of allergic sensitization and is a major
risk factor for asthma in both adults and children.
Its mechanisms of action are thought to include
the induction of oxidative stress that disrupts the
HAT/HDAC balance in airway macrophages, and
enhances the expression of inflammatory cytokines
such as GM-CSF, IL-8, and IL-1b-induced TNFa

[39]. Tobacco smoke reduces the inhibitory effect
of steroids on cytokine release, and may be an
opyright © Lippincott Williams & Wilkins. Unautho
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important modulator of steroid resistance [39].
Tobacco smoke has also been found to alter DNA
methylation in gene promoters and regulatory
sequences, and, among other effects, induces hyper-
methylation and silencing of p16, a tumor suppres-
sor [40,41]. Hypomethylation of the monoamine
oxidase type B (MAO-B) promoter persists in smok-
ers for up to 10 years after quitting [42]. Interest-
ingly, of children exposed in utero to tobacco smoke,
only those with the common glutathione-S-trans-
ferasemu 1 (GSTM1) null phenotype showed
enduring changes in the methylation status of
LINE1genes (long interspersed repetitive element-
1), suggesting that some gene-environment effects
are modulated by epigenetic changes [43].

PAHs (polyaromatic hydrocarbons) are import-
ant components of ambient air pollution and are
also widely found in food products. Benzo-a-pyrene
(BaP) has been shown to form adducts at CpG
dinucleotides, affects histone acetylation status,
modulates global DNA methylation and inhibits
DNMT function [44]. Two CpG rich regions in the
IFN-g promoter were found to be hypermethylated
in human airway smooth muscle cells exposed
in vitro to BaP, suggesting another mechanism
whereby air pollutants are able to enhance the
development of Th2 type allergic responses [1

&&

].
Diesel exhaust particles (DEPs), another

important constituent of particulate air pollution,
have been shown to increase IgE production to
environmental allergens. A potential mechanism
is suggested by the finding of increased methylation
of several sites of the IFN-g promoter, indicating
gene silencing, along with decreased methylation
of a CpG site in the IL-4 promoter that may lead to
increased IL-4 expression [45]. Part of the DEP effect
may be modulated by oxidative stress that affects
histone acetylation and cytokine responses [46].

Endotoxin and exposure to a farming microbial
environment are also known to affect the develop-
ment of atopy and asthma in both children and
adults. Some studies implicate epigenetic changes
as the mechanism by which this is accomplished.
Farm environments are shown to produce a general
increase in DNA methylation at the TSDR [34].
Endotoxin has been shown to demethylate histone
H3 at the IL-1b promoter [47], and silence the
TNF gene by specific chromatin remodeling [48].
Endotoxin has been detected on particulates of
10 and 2.5 mm, and may modulate some of the
effects of particulate air pollution on the lungs
(reviewed in [49

&

]). In support of this is the finding
that TLR4�/�mice do not develope increased
airway hyperresponsiveness (AHR) to ozone or
residual oil fly ash (ROFA) as compared with wild
type mice [50]. Endotoxin is also a significant
rized reproduction of this article is prohibited.
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Table 1. Environmental factors known to lead to epigenetic changes that influence the asthma phenotype

Environmental factors Epigenetic effects Relevance to asthma References

Tobacco smoke Suppresses HDAC2 expression and
overall HDAC activity in macrophages

Enhances the expression of
inflammatory mediators
(GM-CSF, IL-8, IL-1b,
and TNF-a)

[56]

Tobacco smoke Induces hypermethylation of the
promoter of p16; CYP1A1, RASSF1A,
and FHIT in lung cancer cells

Relevance in asthma unknown [40,41,57–60]

Tobacco smoke Induces MAOB promoter
hypomethylation in PBMCs

Might serve as a biomarker of
smoking-induced asthma

[42]

Maternal tobacco smoke Induces global DNA hypomethylation
(AluYb8 but not LINE1) and AXL
and PTPRO promoter hypermethylation
in children

Might serve as biomarkers of
in-utero exposure

[43]

BaP Induces hypomethylation of a number
of genomic repeats and sequence-
specific hypomethylation and
hypermethylation changes in breast
cancer cells

Relevance to asthma unclear [61]

BaP Induces H3K9 acetylation at the genome
level, leading to hypoacetylation and
hyperacetylation in genes belonging
to networks regulating gene expression,
DNA replication and repair, and
carcinogenesis (including ATRX, MBD2,
MBD3, HDAC1, and MTA3)

Relevance to asthma not known [62]

BaP Decreases global DNA methylation,
inhibits DNMTs in vitro, and interferes
with recruitment of methylation
machinery

Might affect expression of
asthma-related genes

[44,63–65]

Maternal PAH exposure
from traffic pollution

Increased maternal exposure associated
with increased hypermethylation of the
ACSL3 promoter in umbilical cord
blood DNA of offspring

Hypermethylation of ACSL3
promoter in umbilical cord
blood associated with increased
asthma risk in childhood

[66]

Oxidants Posttranslationally modifies the HDACs
and creates HAT/HDAC stoichiometry
imbalance

Contribute to the enhancement of
IL-1b–stimulated inflammatory
cytokine production (e.g. IL-8,
IL-6, CXCL1, CXCL2, and CXCL3)
in the inflamed airways

[67,68]

LPS Might be an miRNA-146a target Contributes to LPS priming [69]

LPS Drives TLR signaling through Akt1-
regulated expression of let-7e and
miR-155

Contributes to macrophage
hypersensitivity and endotoxin
tolerance

[70]

Inhaled DEPs Induce hypermethylation at specific CpGs
of the IFNG promoter and
hypomethyl-ation at the IL-4 promoter
in splenic CD4þ cells

Hypersensitize mice to intranasal
Aspergillus fumigatus exposure

[45]

PM-10 Increases HAT activity and acetylated
histone 4; remodels the IL-8 promoter;
action mediated through the induction
of oxidative stress

Increases IL-8 expression and
release from human alveolar
basal epithelial cells

[46]

Exposure of elderly to
ambient black carbon
but not PM2.5 for
4–7 days

Induces hypomethylation of LINE1 Might exacerbate asthma in
this population

[71]

Methyl donors and
coenzymes

Affects DNMT activities and prevents
aberrant global hypomethylation
of the genome

Deficiencies in methyl donors
predisposes to complex diseases,
including asthma

[72,73]
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Table 1 (Continued )

Environmental factors Epigenetic effects Relevance to asthma References

Maternal diet rich in
methyl donors

Favors lymphocyte maturation into
a Th2 phenotype

Increases the risk of allergic airway
disease in offspring

[74]

Maternal folic acid
supplementation

Increases the risk of wheeze and
lower respiratory tract infections
in progeny up to 18 months of age

Explains developmental
reprogramming of asthma risk

[75]

Dust mite antigens Induce expression of miRNA-126
and activates TLR4

Increase inflammation,
a Th2 response, airway
hyperresponsiveness through
suppression of GATA-3

[51]

CYP1A1, Cytochrome P450, family 1, subfamily A, polypeptide 1; DEP, Diesel exhaust particles; FHIT, fragile histidine triad gene; H, histone; K, lysine; LPS,
lipopolysaccharide – synonym for endotoxin; RASSF1A, Ras association (RalGDS/AF-6) domain family member 1. Reproduced with permission from [1

&&

].

Occupational disease
component of house dust mite allergens that
have been shown to activate TLR4 and increase
the expression of specific miRNAs including 16,
21, and 126 [51]. miRNA-126 in particular appears
to enhance Th2 responses, eosinophil recruitment,
and airways inflammation and hyper-responsive-
ness, by augmenting GATA-3 expression that pro-
motes the secretion of IL-4, IL-5, and IL-13 [51].

Innate immune responses are affected by
oxidant stress. Ozone challenge triggers increased
expression of innate immune surface proteins
CD11b, CD14, and TLR4, antigen presentation
markers CD80, CD86, and HLA-DR, and immuno-
globulin receptors CD16, CD23, FceR1 (reviewed by
[49

&

]). Oxidative burst and phagocytic functions are
also increased, and suggest that ozone exposure may
enhance the inflammatory milieu of the lung and
augment the response to biologic agents.

Diet also may enhance the inflammatory milieu
in which the host responds to environmental cues.
A diet rich in methyl donors favors the development
of a Th2 phenotype. A possible mechanism may
involve the hypermethylation and silencing of
Runx3 (runt-related transcription factor 3), a gene
known to suppress IL-4 and activate FOXP3 [52].
Vitamin D also affects airways hyperresponsiveness
[53], as reduced levels associate with higher markers
of allergy and asthma severity [54]. The vitamin D
receptor appears to be epigenetically controlled,
and is similarly activated by DNA demethylation
or histone acetylation [55].

Table 1 is a partial list of environmental
exposures known to cause epigenetic changes
affecting the expression of asthma and allergy genes
[1

&&

,40,46,51,56–75].
POTENTIAL OCCUPATIONAL EFFECTS ON
ALLERGY GENE EXPRESSION AND
OCCUPATIONAL SENSITIZATION

As noted in the introduction to this review, there are
no specific studies as yet of the occupational
opyright © Lippincott Williams & Wilkins. Unautho
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environment or related epigenetic mechanisms
that may modify the development or progression
of occupational allergic disease. However, what we
know from studies of environmental exposures
suggest similar effects are operative in the work-
place. Occupational exposures may include PAHs,
diesel exhaust, particulates, endotoxin, cigarette
smoke, and other forms of oxidant stress, that have
been shown to affect epigenetic marks and airways
inflammation. The onset and progression of asthma
and allergic disease specific to the workplace may be
triggered by a proinflammatory milieu established
through environmental effects on the epigenome.
Indeed, the influence of coexposures to irritants in
the context of an occupational allergen may not be
solely through mucosal effects that permit access to
the allergen. Another significant consequence may
be via epigenetic modifications of gene expression
that create an inflammatory milieu ripe for the
elaboration of an allergic response. Exposure to
low-dose toxins, including PCBs, organochlorine
pesticides, dioxins, and phthalates, may also poten-
tiate allergic responses to otherwise ignored work-
place allergens by modifying the epigenome. The
epigenetic marks of specific workplace exposures
that modulate allergic responses are an area that
calls for further study. Better understanding and
modification of these epigenetic exposures and
consequences may be more effective at reducing
occupational sensitization than by a sole focus on
controlling the allergen exposure itself.
CONCLUSION

Large questions remain unanswered. What is the
dose of environmental co-exposures that most
affects the allergic response? Is the effect to be found
system wide, or is it found only in specific tissues or
organ systems? This, of course, affects which tissues
need be studied, and whether findings in one sys-
tem, such as the blood, can be extrapolated to other
systems, such as the skin or lung. Do epigenetic
rized reproduction of this article is prohibited.
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mechanisms affect onset of allergic disease differ-
ently in atopic and nonatopic individuals? Do these
mechanisms explain the relatively later onset of
occupational allergies in the nonatopic worker?
An integrated question, then, is the duration of
the epigenetic effect. Does it wane over a period
that can be better quantitated? Lastly, epigenetic
effects provide the benefit of plasticity to immune
responses. Can occupational exposures or their
epigenomic effects then be deliberately modified
to influence the outcome to one of tolerance rather
than allergy?

In summary, epigenetics provides a measure of
flexibility in regulating which genes are expressed,
and which are silenced, based on environmental
cues. With more knowledge, it may be the window
through which we can manipulate those exposures
to protect workers from occupational allergic
diseases.
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